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Apoptosis of CTLL-2 Cells Induced by an Immunosuppressant, ISP-I, Is
Caspase-3-Like Protease—Independent1
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In our previous study, the sphingosine-like immunosuppressant ISP-1 was shown to
induce apoptosis in the mouse cytotoxic T cell line CTLL-2. In this study, we character-
ized the ISP-1—induced apoptotic pathway. Although caspase-3-like protease activity
increases concomitantly with ISP-1-induced apoptosis in CTLL-2 cells, the apoptosis is
not inhibited by caspase-3-Like protease inhibitors, i.e. DEVD-cho and z-DEVD-fmk. In
contrast, sphingosine-induced apoptosis in CTLL-2 cells is caspase-3-like protease-de-
pendent. A caspase inhibitor with broad specificity, z-VAD-fmk, protects cells from apop-
tosis induced by ISP-1, indicating that ISP-1-induced apoptosis is dependent on cas-
pase(s) other than caspase-3. Overexpression of Bcl-2 or Bcl-xL suppresses the apoptosis
induced by ISP-1, although sphingosine-induced apoptosis is not efficiently inhibited by
Bcl-2. Finally, ISP-1—induced mitochondrial depolarization, which is thought to be a
checkpoint dividing the apoptotic pathway into upstream and downstream stages, is
not inhibited by DEVD-cho, but is inhibited by z-VAD-fmk. These data suggest that a
pathway dependent on caspase(s) other than caspase-3 is involved upstream of mito-
chondrial depolarization in ISP-1-induced apoptosis.
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Recent reports have shown that sphingolipids are involved
in several cellular biological functions, including adhesion,
differentiation, growth, and apoptosis (1-6). Ceramide,
sphingosine and sphingosine-1-phosphate, which are meta-
bolic products of sphingolipids, are thought to be upregu-
lated by several stimuli and to serve as second messengers
in signal transduction pathways. Increasing the cellular
level of ceramide through exogenous addition or stimula-
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tion of the sphingomyelin cycle by a Fas ligand, TNF-a, UV
or -/-irradiation causes apoptosis in Jurkat T cells and sev-
eral other cell lines (7-14). Sphingosine upregulation also
induces growth inhibition and apoptosis in several cell lines
(15-17). On the other hand, sphingosine-1-phosphate is in-
volved in the proliferation of 3T3 fibroblast cells induced by
platelet-derived growth factor, and in the survival of PC 12
pheochromocytoma cells induced by neuronal growth factor
(18, 19). These findings indicate that the regulation of in-
tracellular ceramide, sphingosine and sphingosine-1-phos-
phate is important for cell survival and cell death.

In addition to an increase in sphingolipids, a decrease in
sphingolipids is also a signal for apoptosis. A sphingosine-
like immunosuppressant, ISP-1, has been shown to be a
potent inhibitor of serine palmitoyl transferase (SPT),
which catalyzes the first step of sphingolipid biosynthesis.
Treatment of cells with ISP-1 has been shown to be effec-
tive for inhibiting the overall de nouo biosynthesis of sphin-
golipids, and, as a consequence, treated cells have a de-
creased level of intracellular sphingolipids (20). ISP-1 treat-
ment induces apoptosis in a mouse cytotoxic T cell line,
CTLL-2 (21) and rat Purkinje cells (22), and G2/M arrest in
the mouse pro B cell line, LyD9 (23). Apoptosis in a temper-
ature-sensitive SPT mutant of CHO cells is also induced
when the cells are cultured at a non-permissive tempera-
ture (24). Inhibition of proliferation by ISP-1 has been
observed in Saccharomyces cerevisiae, and the cloning of a
serine/threonine kinase was found to overcome this inhibi-
tion (25).

Recently, many proteins have been shown to act on the
apoptotic pathway. Among them, the cascade of members of
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the cysteine protease family, caspases, is thought to be in-
dispensable for apoptosis to occur (26-29). Caspase-3, a
member of this family, is the most downstream in the pro-
tease cascade, and the inhibition of caspase-3 by synthetic
peptide inhibitors often prevents apoptosis induced by vari-
ous stimuli. On the other hand, Bcl-2 and Bcl-xL are
known to be apoptosis inhibitory proteins. They function as
suppressors of mitochondria! dysfunction related to apopto-
sis (30-32), and inhibit the release of cytochrome c (33, 34)
and AIF (35), apoptosis-inducing factor, from mitochondria.

In the case of sphingolipid-related apoptosis, exogenously
added ceramide- or sphingosine-induced apoptosis has been
reported to be dependent on caspase-3 (36, 37). Bcl-2 over-
expression does not prevent sphingosine-induced apoptosis
but does prevent ceramide-induced apoptosis (38). How-
ever, the mechanism underlying the apoptosis induced by
ISP-1 has not been clarified yet.

In the present study, we examined the effects of caspase
inhibitors, Bcl-2 and Bcl-xL, on the apoptotic pathway in-
duced by ISP-1, and show that the ISP-1 induced apoptosis
pathway is distinguishable from other sphingolipid-related
apoptosis pathways.

MATERIALS AND METHODS

Materials—ISP-1 was obtained as described previously
(20) and stored as a methanol solution at -20°C. Sphin-
gosine and 7-amino-4-methylcoumarin (MCA) were pur-
chased from Sigma. Recombinant human IL-2 was a
generous gift from Yoshitomi Pharmaceutical Industries.
YVAD-MCA, DEVD-MCA, YVAD-cho, and DEVD-cho were
purchased from Peptide Institute Inc. z-DEVD-fmk was
from MBL. z-VAD-fmk was from Enzyme Systems Prod-
ucts. Anti Bcl-2 was from Calbiochem. Anti Bcl-xL was
from Transduction Laboratories. Anti Bax was from Up-
state Biotechnology. JC-1 was from Molecular Probes.

Cell Culture—The mouse cytotoxic T cell line CTLL-2
(39) was obtained from the American Type Culture Collec-
tion. The cells were maintained in RPMI 1640 containing
10% FCS and 50 units/ml IL-2. For the induction of apopto-
sis, cells were cultured at either 2.5 X 104 cells/ml in the
presence of 50 nM ISP-1 or 1.0 X 105 cells/ml in the pres-
ence of 5 |i.M sphingosine. Cell viability was determined by
the erythrosine exclusion assay, in which more than 200

cells are counted and the viability is estimated (21). For
flowcytometric analysis of apoptosis, the cells were stained
with propidium iodide using a Cycle TEST™ PLUS DNA
Reagent Kit (Becton Dickinson) as described previously
(21), and then examined with a FACScan™ flowcytometer
(Becton Dickinson).

Measurement of Caspase Activity—Cells were washed
twice with phosphate-buffered saline (PBS) and then once
with extraction buffer (50 mM PIPES-NaOH, pH 7.0, 50
mM KC1, 5 mM EGTA, 2 mM MgCL,, 1 mM DTT, 20 uM
cytochalasin B, 1 mM PMSF, 50 u.g/ml antipain). A cytosolic
extract was prepared by sonication after two rounds of
freeze-thawing in extraction buffer. Aliquots of the extract
supernatant, each containing 12 u,g protein, were diluted
with ICE standard buffer (100 mM HEPES-KOH, pH 7.5,
10% sucrose, 0.1 mg/ml ovalbumin, 0.1% CHAPS, 10 mM
DTT) and then incubated at 30°C for 30 min with 2 pM
fluorogenic substrate. Caspase activity was measured with
excitation at 380 nm and emission at 460 nm using an RF-
1500 spectrofluorophotometer (Shimadzu).

DNA Transfection—The human Bcl-2- and chicken Bcl-
xL-cDNA-containing plasmids were generous gifts from Dr.
Y. Tsujimoto (Osaka University). The Xhol fragment con-
taining human Bc!-2 cDNA was subcloned into the pCXR,
vector (40). The EcoRI fragment containing chicken Bcl-xL
cDNA was subcloned into the pCXN2 vector. These con-
structs were transfected into CTLL-2 cells by electropora-
tion. After 24 h, G418 (0.5 mg/ml) was added to the cells,
and the clones were then isolated and analyzed for Bcl-2
overexpression with a flowcytometer using a specific anti-
body (Pharmingen), and for Bcl-xL by RT-PCR using spe-
cific primers.

Detection of Mitockondrial Depolarization—2 X 105 cells
were suspended in 200 ul of medium with 5 u.g/ml of JC-1,
incubated at 37°C for 10 min, washed two times with PBS,
and resuspended in 1 ml of PBS. Red and green fluores-
cence emission was analyzed with a FACScan™ flowcytom-
eter.

RESULTS

Caspase-3-Like Protease Inhibitors Have No Effect on
ISP-1-Induced Apoptosis—To determine the possible in-
volvement of members of the caspase family in the apop-
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Fig. 1. Increase of caspase-3-
like activity in ISP-1- and
sphingosine-treated CTLL-2
cells. Cells were incubated with
ISP-1 (A), or sphingosine (B) in
order to induce apoptosis. After
incubation, caspase-3-like ac-
tivity was measured with a fluo-
rescence substrate, DEVD-
MCA, as described under "MA-
TERIALS AND METHODS." At
least three independent experi-
ments were performed, each
giving similar results. A repre-
sentative example is shown in
this figure.
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totic pathway triggered by ISP-1, the activity of caspase-3-
like protease, which is known to participate in most apopto-
sis pathways, was measured in lysates of CTLL-2 cells after
treatment with ISP-1 using a specific tetrapeptide sub-
strate, DEVD-MCA. The caspase-3-like protease activity
started to increase rapidly after 42 h, although the activity
in untreated cells also started to increase 54 h after mock
treatment (Fig. 1A). The increased activity of the mock-
treated cells was most likely induced by an insufficiency of
growth factors or nutrients due to cell overgrowth, since
cells exhibiting lower confluency did not show any apoptotic
features (data not shown). The increase in the caspase-3-
like activity caused by ISP-1 correlates with the elevated
number of dead CTLL-2 cells (Figs. 1A and 3A). To demon-
strate the involvement of caspase-3-like protease directly,
the effects of caspase-3—like protease inhibitors on ISP-1-
induced apoptosis were examined by flowcytometric analy-
sis of hypodiploid nuclei and by detecting loss of viability.
Surprisingly, the ISP-1-induced increases in both hypodip-
loid nuclei and loss of viability were not inhibited by

DEVD-cho, a specific inhibitor of caspase-3-like protease,
although z-VAD-fmk, an inhibitor with broad specificity,
inhibited both (Figs. 2A and 3A). To exclude the possible
degradation of DEVD-cho during incubation, the inhibitor
was added repeatedly 0, 24, 36, and 44 h after the addition
of ISP-1. Even with this inhibitor treatment, ISP-l-in-
duced apoptosis was not inhibited (Figs. 2B and 3B). Fur-
thermore, z-DEVD-fmk, an irreversible caspase-3-like pro-
tease inhibitor, had no effect on the apoptosis induced by
ISP-1 (data not shown). In contrast, CTLL-2 cells in which
apoptosis was induced by sphingosine, another form of
sphingolipid-related apoptosis induction, showed increasing
caspase-3-like protease activity (Fig. IB), and the apoptosis
was inhibited by both DEVD-cho and z-VAD-fmk (Figs. 2C
and 3C). This is consistent with the case of sphingosine-
induced apoptosis in HL60 cells (37). These results suggest
that a pathway dependent on caspase(s) other than cas-
pase-3—like protease is involved in CTLL-2 apoptosis in-
duced by ISP-1.

Bcl-2 and Bcl-xL Prevent ISP-1-Induced Apoptosis—Bcl-
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Fig. 2. Effects of caspase inhibitors on ISP-1- and sphingosine-
induced hypodiploid DNA peaks in CTLL-2 cells. (A) Cells were
incubated with ISP-1 for 52 h, and a caspase inhibitor (200 (JLM) was
added to the cells 38 h after the addition of ISP-1. Similar results
were obtained when the caspase inhibitor was added 0 h or 24 h after
the addition of ISP-1. (B) Cells were incubated with ISP-1 for 52 h.
For treatment with YVAD-cho or DEVD-cho, the inhibitor (100 p.M)
was added successively at 0, 24, and 36 h after the addition of ISP-1,

with an extra addition (200 (iM) after 44 h to give a final inhibitor
concentration at 500 fiM. In the case of z-VAD-fmk, the inhibitor (40
p.M) was added at 0,24, and 36 h after the addition of ISP-1, with an
extra addition (80 (JLM) after 44 h to give a final concentration at 200
(JLM. (C) Cells were preincubated with a caspase inhibitor (200 (iM)
for 1 h and then treated with sphingosine for 9 h. After incubation,
the cells were stained with propidium iodide and analyzed as de-
scribed under "MATERIALS AND METHODS."
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Fig. 3. Effects of caspase inhibitors on the loss of viability in-
duced by ISP-1 and sphingosine. All conditions, including those
for apoptosis induction and treatment with caspase inhibitors, were
identical to those described in the legend to Fig. 2. Cell viability was
measured as described under "MATERIALS AND METHODS." At
least three independent experiments were performed, with similar
results. A representative example is shown in this figure.
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Fig. 4. Effects of the overexpression of Bcl-2 and Bcl-xL on the
loss of viability induced by ISP-1 and sphingosine. CTLL-2 cells
overexpressing Bcl-2 or Bcl-xL and vector transfectants (Neo) were
incubated with ISP-1 (A) or sphingosine (B) for the indicated times,
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and their viability was measured as described under "MATERIALS
AND METHODS." At least three independent experiments were per-
formed, with similar results. A representative example is shown in
this figure.
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Fig. 5. Effects of caspase inhibitors and Bcl-2 on ISP-1-
induced mitochondrial transmembrane potential.
Cells were incubated with ISP-1 for 51 h. Other conditions,
including those for treatment with caspase inhibitors, were
identical to those described in the legend to Fig. 2B. The mi-
tochondrial transmembrane potential was measured as de-
scribed under "MATERIALS AND METHODS."
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2 and Bcl-xL are members of the Bcl-2 family, which is
known to inhibit many types of apoptosis. To determine the
effects of Bcl-2 and Bcl-xL, stable transfectants of CTLL-2
cells overexpressing either Bcl-2 or Bcl-xL were developed
and treated with ISP-1 or sphingosine. As shown in Fig.
4A, Bcl-2 and Bcl-xL overexpressing transfectants exhib-
ited marked resistance to ISP-1. Although Bcl-xL expres-
sion significantly prevented the apoptosis induced by
sphingosine, Bcl-2 expression did not effectively inhibit
sphingosine-induced apoptosis until at least 8 h (Fig. 4B),
which is consistent with the case of sphingosine-induced
apoptosis of the leukemic cell line, TF1 (38).

ISP-1-Induced Mitochondrial Depolarization—The mito-
chondrial depolarization that occurs during apoptosis in-
duced by ISP-1 was measured using the cationic carbocya-
nine dye JC-1. JC-1 normally exists as a monomer emitting
green fluorescence at low concentration, but its potential-
driven mitochondrial accumulation results in a dimeric
configuration emitting red fluorescence. Therefore, the red
fluorescence emission of JC-1 can be used to determine
mitochondrial membrane potential (41). As shown in Fig. 5,
a decrease in the red fluorescence emitted by JC-1 was
observed in ISP-1-treated CTLL-2 cells, suggesting that
ISP-1-induces mitochondrial depolarization. Mitochon-
drial depolarization is known to be a checkpoint in many
types of apoptosis, and the apoptosis pathway can be
divided into those parts downstream and upstream of depo-
larization. The mitochondrial depolarization induced by
ISP-1 is resistant to DEVD-cho but sensitive to z-VA-fmk
(Fig. 5). Bcl-2 overexpression also prevents mitochondrial
depolarization (Fig. 5). These results suggest that the
upstream stage is dependent on caspase(s) other than cas-
pase-3-like protease, although the mechanism of the down-
stream stage has not been determined.

DISCUSSION

In this study, the apoptosis of CTLL-2 cells induced by an
immunosuppressant, ISP-1, was characterized. ISP-l-in-
duced apoptosis is not inhibited by caspase-3—like protease
specific inhibitors, although Bcl-2 protects the cells from
apoptosis, in sharp contrast to the case of apoptosis induced
by sphingosine, which is caspase-3-like protease-depen-
dent and is not effectively inhibited by Bcl-2. These results
indicate that ISP-1 and sphingosine induce apoptosis in dif-
ferent ways, although their structures are similar (20). In
our previous report (21), we postulated that ISP-1 and
sphingosine induce apoptosis through downregulation and
upregulation of sphingolipids, respectively, a hypothesis
consistent with the results of this study. The sensitivity to
caspase-3-like protease inhibitor also distinguishes ISP-1-
induced apoptosis from ceramide-induced apoptosis, an-
other sphingolipid-related form of apoptosis (36).

ISP-1-induced apoptosis is independent of caspase-3—
like protease but dependent on some other caspase(s) be-
cause a caspase inhibitor with broad specificity inhibits
apoptosis. Furthermore, the pathway dependent on cas-
pase(s) other than caspase-3—like protease is located up-
stream of mitochondrial depolarization. However, the path-
way upstream of depolarization is usually caspase-indepen-
dent, except in Fas- and TNFR-mediated apoptosis. Fas-
mediated mitochondrial depolarization is known to be de-
pendent on caspase-8, which promotes the cleavage of the
proapoptotic protein Bid, leading to a mitochondrial loss of
function (42-44). Caspase-8-like protease(s) might, there-
fore, be involved upstream of the depolarization induced by
ISP-1.

The pathway downstream of the ISP-1-induced mito-
chondrial depolarization was not characterized in this
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study. However, it can be assumed that the downstream
pathway is either dependent on caspase(s) other than
caspase-3-like protease or caspase-independent, because
both the whole pathway and the upstream stage are depen-
dent on caspase(s) other than caspase-3—like protease. Apo-
ptosis-inducing factor (AIF) is a 50 kDa protein associated
with the mitochondrial inner space that is released during
mitochondrial depolarization (35). AIF is sufficient to in-
duce phenomena typical of nuclear apoptosis in a cell-free
and cytosol-free system in a caspase-independent manner.
AIF might, therefore, be involved downstream of depolar-
ization in ISP-1—induced apoptosis, if the pathway down-
stream of the ISP-1-induced mitochondrial depolarization
is caspase-independent. Mitochondrial depolarization leads
to the release of cytochrome c as well as AIF (33,34). Cyto-
chrome c has the ability to activate caspase-3 (45). The
increase in the activity of caspase-3—like protease, which
occurs concomitant with apoptosis induced by ISP-1, may
be due to cytochrome c released from mitochondria. An-
other candidate for the apoptosis mediator of the down-
stream pathway is Bax, which is a member of the Bcl-2
family and acts as a proapoptotic protein. Bax inhibits the
anti-apoptotic action of Bcl-2 (46), and Bax itself causes
apoptosis in a caspase-independent manner (47). However,
no significant difference in the intracellular levels of Bax
was found between control and ISP-1-treated cells (data
not shown).

Although most apoptosis pathways are known to be
caspase-3-dependent, a few have been shown to be inde-
pendent. Apoptosis induced by IL-3 deprivation in murine
leukemic cell line 32D is inhibited by z-VAD-fmk, but not
by z-DEVD-fmk (48). DEVD-cho has no effect on apoptosis
induced by buprenorphine hydrochloride in NG108-15
nerve cells (49). Furthermore, apoptosis induced by exoge-
nous NO donors in RES cells, which are RAW 264.7 mac-
rophages resistant to apoptosis induced by inducible NO
synthase, is not inhibited by DEVD-cho despite increasing
caspase-3-like activity during apoptosis (50), in close corre-
spondence with the case of ISP-1-induced apoptosis. Analy-
ses of caspase-3-deficient mice have demonstrated that
their thymocytes are still sensitive to several apoptotic
stimuli, although the apoptosis of neuronal cells is pre-
vented (51). Caspase-3 substrates, including PARP and
DFF45, are cleaved even in MCF-7 cells, which have a
functional deletion of the caspase-3 gene, when the cells are
stimulated with TNF-a and staurosporin (52). Under these
conditions, other DEVD-sensitive caspases, such as cas-
pases-2 and -7, are not activated, implying that protease(s)
other than caspase-3 exhibit are able to cleave these sub-
strates (52).

Thus, ISP-1-induced apoptosis of CTLL-2 cells is distinct
from sphingosine- or ceramide-induced apoptosis. However,
it remains to be determined which sphingolipids are direct-
ly involved in the apoptosis induced by ISP-1.

We would like to thank Dr. T. Fujita (Setsunan University) for pro-
viding us with the ISP-1, Dr. J. Miyazaki (Osaka University) for
the pcXN2 vector, and Yoshitomi Pharmaceutical Industries Ltd.
for the recombinant human IL-2.
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